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Abstract. We report the first observation of an electroclinical effect at the TGBC–TGBA transition induced
by an external DC electric field applied perpendicular to the pitch direction. Upon increasing the field,
the smectic layers rather than the director field tilt over relative to the helical axis, allowing to detect the
effect by X-ray scattering from well aligned samples. The observations are qualitatively interpreted in the
frame of a mean field phenomenological model of a helically modulated electroclinical effect.

PACS. 61.30.Gd Orientational order of liquid crystals; electric and magnetic field effects on order –
64.70.Md Transitions in liquid crystals

In 1977 Garoff and Meyer [1] demonstrated the existence
of an electroclinic effect above the smectic A–smectic C∗

(SmA–SmC∗) transition in a chiral liquid crystal. The
electroclinical effect is a continuous rotation of the smectic
optical axis in response to an electric field applied parallel
to the layer planes. The electric field couples linearly to
the local dipole moment by inducing a nonzero director
tilt proportional to the electric field amplitude. The elec-
troclinical phenomenon has been extensively investigated
in the bulk [2–4] and at surfaces [5–8] of SmA and other
layered phases; it has even been observed in cholesteric
phases [9–13] but not yet reported in Twist Grain Bound-
ary smectic phases (TGB) for which electric field induced
transition to the unwound ferroelectric SmC∗ state has
instead been described [14].

The TGB state represents the liquid crystal analog to
the Abrikosov flux phase appearing in type II supercon-
ductors [15]. The TGB phase is made of smectic slabs (i.e.
superconducting phase in the analogy) regularly stacked in
a helical fashion along an axis x perpendicular to the slab
boundaries. Adjacent slabs are continuously connected via
a grain boundary constituted of a grid of parallel equis-
paced screw dislocation lines analogous to magnetic vor-
tices. Two TGB phases have been predicted [15] and ex-
perimentally identified: the TGBA [16] and TGBC phases
[17]. The TGBA is characterized by SmA slabs. The ne-
matic director n is parallel to the normal to the smectic
planes N and both are perpendicular to the pitch direc-
tion x. In the TGBC phase, instead, the slabs have a SmC
structure with a SmC tilt angle θ defined by cos θ = n ·N.
The smectic layers are tilted by an angle ωL with respect
to x [18]. The TGBC structure has a priori one more de-
gree of freedom than TGBA namely the orientation of the
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Fig. 1. Helielectric model of the TGBC phase: local sponta-
neous polarizations PSi are perpendicular to the pitch axis x
at an angle χi relative to the electric field E (along y). ωL is
the angle of the smectic layer with respect to x.

vector n × N parallel to the spontaneous electric polar-
ization PS of each slab. It was suggested in reference [18]
that n in the TGBC phase remains orthogonal to the he-
lical axis x like in the TGBA and cholesteric phases. This
assumption which minimizes the bend term of the Frank
energy is possible since ωL equals θ within experimental
accuracy. As a consequence, the spontaneous electric po-
larization PS of each SmC slab is orthogonal to the pitch
axis and precesses in a helical fashion about it (see Fig. 1).
Interestingly, such helielectric structure can be checked by
applying an external transverse electric field E which cou-
ples to the spontaneous polarizations of each smectic slab
[19,20]. The electric energy term per unit surface of the
ith slab reads:∫

slab i
thickness

−PSi ·E dx = −PSiEsi cosχi (1)
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where si is the ith slab thickness, and χi is the angle be-
tween the spontaneous polarization PSi and the electric
field direction, chosen along y. In order to minimize the
electric energy (1) three different mechanisms are possible:
(i) a modulation of the thickness si of the slabs: accord-
ing to the sign of their electric energy, slabs with positive
(negative) cosχi will expand (shrink) (ii) a rotation of
the slabs about the screw axis x under the effect of the
electric torque in order to increase cosχi and (iii) a mod-
ulation δPSi of the modulus PSi of the local polarization,
according again to the sign of the electric energy (i.e. the
product δPSi cosχi must be positive). The first two effects
have been observed and characterized in TGBC phases
[19,20]. The third effect corresponds to an electroclinical
distortion as will be discussed in the following.

In the TGBC phase, the electric polarization modu-
lus PSi is proportional to |ni ×Ni| = sin θi. An external
electric field parallel to PSi will increase the local polar-
ization PSi of slab number i via a corresponding variation
of the tilt θi. This is the well known electroclinical effect.
Its magnitude is proportional to the component E cosχi
of the field along PSi. It is thus expected to be modu-
lated with χi. A similar behavior occurs for the TGBA

phase. The TGBA has no spontaneous polarization since
|ni×Ni| = 0. Nevertheless a polarization δPSi and the cor-
responding tilt can be induced by an external electric field.
Both should likewise be modulated by the helical structure
of the TGBA. In analogy with the electroclinic effect of a
chiral SmA, we call this phenomenon helically modulated
electroclinic effect. The local SmC tilt θi can a priori be
changed by reorienting ni, Ni or both. A rotation of the
director ni out of the y-z plane costs a large elastic energy
of bend. On the other hand, a Ni-reorientation costs only
a little increase in the grain boundary energy. The latter
mechanism is therefore expected to prevail, allowing X-ray
diffraction an easy detection (unlike usual electroclinical
effect in non twisted chiral smectics).

In this letter we report an experimental study of the
helically modulated electroclinic effect in a TGB phase.
The experimental results are qualitatively explained by a
simple phenomenogical model.

The electroclinical effect is known to be maximum
close to a SmA–SmC∗ transition where the tilt suscep-
tibility is large. We therefore chose a compound with a
continuous TGBA–TGBC transition. The experiment was
performed with the R-eniantiomer of the n = 11 homolog
of the series studied by the Bordeaux group [17,18], 3-
fluoro-4-[(R) or (S)-1-methylheptyloxy]-4′-(4′′-alkoxy-2′′,
3′′-difluorobenzoyloxy) tolan (nF2BTFO1M7 for short).
The phase sequence on cooling is: isotropic (112.4 ◦C) blue
phases (105.7 ◦C) N∗ (104 ◦C) TGBA (101.5 ◦C) TGBC

(100.1 ◦C) SC
∗ (46.4 ◦C) crystal. Well aligned samples

were prepared as discussed elsewhere [21] between thin
(50µm) flat pieces of polymer coated and unidirectionally
buffed glass. The thickness of the liquid crystal film was
fixed by two calibrated spacers: we used 25µm parallel
gold wires, 3 mm apart and parallel to the direction of
rubbing. The quality of the alignment, with helical axis x
perpendicular to the cell walls was checked optically under
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Fig. 2. Rocking curves (ω-scans) recorded at constant
wavevector transfer QS = 0.164 Å−1 across the ring of scatter-
ing in the plane (Qx, Qz) perpendicular to the field direction
(χ = 0) for external voltage Vext = 0 V and Vext = 100 V.
(a) T = 101.6 ◦C in the TGBA phase: at zero field (dots), the
scattering profile is well fitted to a Gaussian lineshape (solid
line) centered at ω = 0. In the field (filled diamonds), the
Gaussian profile is preserved, but shifted by 1.8 degrees, well
beyond the uncertainty on the position of the maximum (of
order 0.3 degrees). (b) T = 101.4 ◦C in the TGBC phase: at
zero field (dots), the profile exhibits two maxima centered at
ωL ≈ ±8.5 degrees. It is reasonably well fitted to two over-
lapping Lorentzian functions (solid line). In the field (filled
diamonds), the two maxima are shifted both in intensity and
angular position (ω). The variation of the intensity are due to
field induced translations of the grain boundaries [19]. Arrows
indicate the center of the Gaussian or Lorentzian fitting func-
tion. Inset shows scattering geometry and reciprocal lattice of
the TGBC structure.

polarizing microscope. The wires were connected to a DC
power supply in order to produce an electric field along
a direction perpendicular to x. The cells were then intro-
duced in a two stage oven (±10 mK accuracy) mounted
on the X-ray spectrometer. Experiments were performed
using Cu-Kα radiation of an 18 kW rotating anode X-
ray generator. The samples were mounted on a 4-circle
goniometer. The scattered intensity was analyzed by ver-
tical slits and collected by a scintillator. The scattering
vector Q is defined by the axes Qx, Qy and Qz (see inset
of Fig. 2b for the TGBC structure). ω and χ are the rock-
ing angles about the vertical (Qy) and horizontal (Qx)
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axes respectively. The X-ray optics of the spectrometer
was optimized to probe the angular distribution of the
layer normal (ω-scans) at constant momentum transfer:
the size of the X-ray beam at sample position was set
to 1 × 2 mm2. The in-plane resolution was then broad
enough (1.0× 10−2 Å−1 FWHM) to avoid two-theta (i.e.
counter position) corrections with electric field or temper-
ature. Samples are mounted with the rubbing direction
parallel to the z-axis.

We first performed a series of ω-scans with no applied
voltage (Vext = 0) [22]. The liquid crystal sample was
cooled down slowly by steps of 0.1 ◦C from the N∗ phase
into the TGBA phase, then into the TGBC phase. In the
TGBA phase, the intensity profiles show a broad peak cen-
tered at ω = 0 (circles in Fig. 2a). Upon cooling down to
the TGBC phase, the signal splits up into two broad sym-
metrical peaks close to the TGBA–TGBC transition which
occurs at temperature TAC (circles in Fig. 2b). Deeper in
the TGBC phase, finally, the two symmetrical peaks get
sharper at positions ±ωL. ωL represents the tilt angle of
the smectic layers relative to the pitch axis. In the TGBC

phase, the two maxima±ωL correspond to slabs with scat-
tering vector Q at angles (+ωL, χ) and (−ωL, χ), the lat-
ter orientation being equivalent to (+ωL, χ + π) due to
the symmetry Q ↔ −Q. ωL can be taken as the order
parameter of the TGBA–TGBC transition.

We then applied a DC voltage Vext across the gold elec-
trodes to induce a positive electric field along the y-axis.
The origin of the χ circle is chosen for vertical external
field. For each voltage value, a series of ω-scans at χ = 0
was recorded by increasing the temperature by steps of
0.1 ◦C from 100.9 ◦C in the middle of the TGBC phase to
102.2 ◦C in the TGBA phase. Two ω-scans recorded for
Vext = 100 V are shown in Figure 2 (filled diamonds).
Temperature values are the same as for Vext = 0 V. The
symmetry of the profiles with respect to ω = 0 is lost. In
the TGBA phase, the maximum is shifted from ωL = 0
towards ωL > 0. At 101.6 ◦C for instance, the shift is
ω = 1.8 degrees well beyond the uncertainty on the posi-
tion of the peak (± 0.3 degrees). A more pronounced shift
of ωL towards positive values is measured close to the
TGBA–TGBC transition. On the other hand, the position
of the peaks remains almost unchanged deep in the TGBC

phase. All these observations indicate that the layer nor-
mal tilts over in response to a DC electric field to reach
a new equilibrium value ωL(T, Vext). The effect of a DC
electric field is not limited to tilting the smectic layers: the
two peaks of the ω-scan recorded at 101.4 ◦C close to the
TGBA–TGBC transition (filled diamonds in Fig. 2b) have
very different intensity. The peak corresponding to slabs
with polarization parallel to the electric field (ωL > 0) is
much more intense than its counterpart at ωL < 0 cor-
responding to slabs with polarization antiparallel to the
electric field. This difference in intensity is a consequence
of the other two phenomena discussed from equation (1):

(i) variation of the thickness si of the smectic slabs and
(ii) χ-reorientations [19,20].

The variations of the tilt angle (or else TGBC order
parameter) ωL(T, Vext) with temperature are plotted on

10

5

0

-5

-10

100.8 101 101.2 101.4 101.6 101.8 102 102.2

±Z
L
 à 0V

±Z
L
 à 50V

±Z
L
 à 100V

±Z
L
 à 150V

Z
L (

d
e

g
re

e
s)

Temperature (°C)

Fig. 3. Experimental results: ωL versus T by going from TGBC

to TGBA for Vext = 0 V, Vext = 50 V, Vext = 100 V and
Vext = 150 V. Estimated error bars on ω are drawn. Note that
most of them are less than the symbol size.

Figure 3 for four different values of the applied voltage.
The temperature scans go from the TGBC phase to the
TGBA. In the TGBC and for Vext = 0, ωL(T, 0) vs. tem-
perature is represented by two symmetrical branches ±ωL
corresponding to positions (ωL, χ = 0) and (ωL, χ = π)
on the reciprocal rings. ωL vanishes continuously upon
heating at the TGBC–TGBAtransition with a power law
decay tβ with t = (TAC − T )/TAC, TAC ≈ 101.56 ◦C and
β = 0.20±0.05 [22]. When the DC electric field is applied,
the behavior of the tilt angle ωL depends strongly on the
sign of the branch. The positive (negative) branch corre-
sponds to scattering from slabs with polarization parallel
(antiparallel) to E (i.e. χ = 0 and χ = π respectively).
Let us describe the behavior of the positive branch first.
Deep in the TGBC phase, ωL is not influenced by the
field: the electroclinical effect is not detected far from the
TGBC–TGBAtransition, as expected. Upon approaching
the TGBA–TGBC transition, the tilt susceptibility be-
comes more important and the spontaneous TGBC tilt
increases with the field. At the the transition temperature
TAC and above in TGBA phase, a non zero tilt ωL > 0
is observed meaning that a layer tilt relative to the heli-
cal axis appears in response to the transverse DC electric
field. Whatever the voltage, ωL varies continuously at the
TGBC–TGBAtransition. Note that the positive branch
looks very much like the behavior of an order param-
eter close to a second order transition in presence of a
conjugated field (e.g. para to ferromagnetic transition un-
der external magnetic field): the critical singularities at
t = 0 disappear in the presence of the field. The nega-
tive branch exhibits a quite different behavior. ωL(< 0)
is again very close to the zero field value at low temper-
ature in the TGBC phase, it shifts a little upon heating
but disappears abruptly at some temperature T ∗ below
TAC , the difference (TAC − T ∗) increasing with the field.
For Vext = 150 V the negative branch even disappears for
all measured temperatures in the TGBC range.

We show now that the reported experiments can be
qualitatively explained in terms of helically modulated
electroclinical effect in a simple mean field phenomeno-
logical approach. The TGB free energy is constructed as
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a Landau expansion in powers of the scalar (Ising) order
parameter ωL. It reads, per unit area in the y-z plane:

FAC =
∑
slabs i

{
−EPsi sinωLi cosχi +

A

2
ω2
Li +

B

4
ω4
Li

+O(ω6
Li) +

C

2
(ωLi+1 − ωLi)

2

}
(2)

ωLi is the tilt angle of the smectic layers in slab number i
of thickness si and orientation χi of the local polarization
with respect to the external field. The first term in (2)
is the electric contribution discussed in equation (1). The
phase transition at zero field is controlled by the Landau
expansion in even powers of ωLi (symmetry ωL ↔ −ωL).
It occurs for A = 0 at TAC and is second order in mean
field for B > 0. In presence of the field, spatial modula-
tions of ωLi are expected. Their cost in energy is described
by the gradient term (C/2)(ωLi+1 − ωLi)2. At zero field,
this term is minimum (and null) for a uniform value of ωLi.
Since we focus on electroclinic effect, spatial modulations
of slab thickness si and orientation χi are neglected (see
Ref. [20] for modelization of these effects) which amounts
to postulate χi = i∆ and si = lb. Minimization of the
free energy (2) for an infinite stack of discrete slabs is dif-
ficult. As usual, a continuous description is easier to han-
dle and captures the same physics. Taking the continuous
limit (i.e. infinite stack of slabs of infinitesimal thickness
si → 0 and orientation χ = 2πx/P ) we rewrite the free
energy (2) per unit area in the y-z plane and per pitch:

f=
1

2π

∫ 2π

0

{
−λη cosχ+

r

2
η2+

u

4
η4+

ν

6
η6+

c

2

(
dη

dχ

)2
}
dχ

(3)

η = sin(ωL(χ, T, Vext)) ≈ ωL denotes the new continuous
order parameter of the TGBA–TGBC transition. The new
Landau coefficients r, u and c are proportional to A, B
and C in (2). The gradient term is now a simple spatial
derivative. The 6th order term has been added to the Lan-
dau expansion to include a possible tricritical behavior. At
zero field, for u > 0, the TGBA–TGBC transition is sec-
ond order at r = 0 (T = TAC) and η scales as |T−TAC |1/2.
The transition is first order for u < 0 and tricritical for
u = 0 with η ∝ |T − TAC |1/4. The experimental order
parameter exponent measured on our liquid crystal com-
pound β = 0.20± 0.05 [22] is marginally consistent with
a tricritical mean field value; we shall therefore consider
the tricritical condition u = 0, ν > 0 in the following for
numerical calculations. This restriction which may not ap-
ply to other TGBA–TGBC systems is obviously of minor
importance in the present model. Finally, the number of
independent coefficients is reduced to two by an appropri-
ate rescaling of the order parameter and of the energy:

F =
2πf

c

( c
ν

)−1/2

=

∫ 2π

0

{
−Λφ cosχ+

R

2
φ2 +

1

6
φ6 +

1

2

(
dφ

dχ

)2
}
dχ

(4)

in which the rescaled order parameter is Φ = αη with
α = (ν/c)1/4. The parameters Λ = αλ/c and R = r/c
are proportional to the electric field amplitude E and to
the distance from the transition temperature T–TCA. The
stationary solution Φ(χ) is obtained by solving the Euler-
Lagrange equation of the free energy (4):

d2Φ

dχ2
−RΦ− Φ5 = −Λ cosχ. (5)

Before we proceed to numerical resolution of (5), let us
discuss the solutions Φ(χ) in the limit of low electric field
|Λ/R| � 1. For R > 0 (TGBA), a particular solution of
equation (5) reads:

ΦA(χ) =
Λ

1 +R
cosχ. (6a)

The electric field induces a layer tilt ΦA(χ) 6= 0 modulated
by the TGB helical structure: ΦA(χ) is maximum for χ =
0 and zero for χ = π/2. In reciprocal space, the TGBA ring
is rotated by a weak angle ωL(T, Vext) ≈ ΦA(χ)/α about
the Qy axis parallel to the field direction. An experimental
ω scan at χ = 0 [π] detects the shift of the maximum
of scattering towards ωL proportional to the field (Λ ∝
E) and decreasing upon heating above TCA. Note that a
quadratic response (dielectric) would be proportional to
E2 ∝ cos2 χ and produce two maxima on an ω scan. In
the TGBC phase in the low field limit (|Λ/R| � 1, R <
0), two solutions corresponding to the two Bragg rings
ΦC+(χ) and ΦC−(χ) are found:

ΦC±(χ) = ±(−R)1/4 +
Λ

1− 4R
cosχ. (6b)

The two TGBC rings are rotated about the Qy axis in
a symmetrical way preserving the inversion symmetry
about the origin of reciprocal space. An ω scan at χ = 0
would detect two peaks at positions ωL+ = ΦC+(0)/α
and ωL− = ΦC−(0)/α which are both shifted by the same
amount, proportional to E (with the same sign) and de-
creasing upon cooling far below TCA.

In the general case, the non-linear differential equa-
tion (5) can be solved numerically. We used the D02RAF
NAG Fortran routine. This routine solves the two-point
boundary-value problem with general boundary condi-
tions for a system of ordinary differential equations, using
a deferred correction technique and Newton iteration. We
impose periodic boundary conditions: Φ(0) = Φ(2π) and
(dΦ/dχ)|χ=0 = (dΦ/dχ)|χ=2π . Figure 4 shows ΦC+(0),
ΦC−(0) and ΦA(0) versus R for different values of Λ.
ΦC−(0) corresponds to smectic slabs with polarization
anti-parallel to the electric field: the polarization decreases
in response to the electric field and as consequence ΦC−(0)
and hence the tilt is lower than the equilibrium value in
absence of the field. On the other hand, ΦC+(0) refers
to slabs with polarization parallel to the electric field
and increases with the field. For weak values of the field
ΦC+(0) and ΦC−(0) merge together at R ≈ 0, then, for
R > 0, only one stable solution ΦA(0) exists corresponding
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Fig. 4. Numerical results: order parameter Φ versus control
parameter R of the TGBC–TGBA transition for Λ = 0, Λ =
0.2, Λ = 0.5, Λ = 1 and Λ = 2.

to a tilted TGBA phase. The evolution remains continu-
ous: the single distorted ring splits up continuously into
two rings. For higher values of the electric field (Λ = 1 and
Λ = 2, in Fig. 4) a first order transition occurs at a critical
temperature lower then TAC(R < 0), the numerical solu-
tion jumps from the field distorted two-branch solution
ΦC±(χ) to the single branch ΦA(χ). The numerical solu-
tions agree qualitatively well with the experimental results
ωL(χ) vs. T shown in Figure 3. In particular, the experi-
mental discontinuous jump from two branches solution to
one branch solution is well reproduced on the numerical
curves. The change in intensity of the Bragg maxima upon
increasing the field is however not described by the model
since it corresponds to translations of grain boundaries as
was discussed in reference [20].

In conclusion, the present paper demonstrates the ex-
istence of an electroclinical effect in TGB phases close to
a TGBA–TGBC transition. Although the phenomenologi-
cal model is oversimplified, it supports the idea of a helical
modulation of this effect and reproduces the main features
of the observed behavior. A more accurate modelization
should consider slabs of finite size, include translation of
grain boundaries and rotation of smectic slabs.
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